1-й курс, весна, ДЗ #5, Рандомизированные алгоритмы и их друзья СПб, Академический Университет, 3 февраля 2020

Содержание

Must have		2
Задача 5А.	Happy Three Friends [0.2 sec, 256 mb]	2
Обязательны	ые задачи	3
Задача 5В.	Арифметическая прогрессия [1 sec, 256 mb]	3
Задача 5С.	Альфа Дерево [8 sec, 256 mb]	4
Дополнител	ьные задачи	5
Задача 5D.	Длинная дорога [1 sec, 256 mb]	5
Задача 5Е.	Первообразный корень [1 sec, 256 mb]	6
Задача 5F.	Корни [0.8 sec, 256 mb]	7

Вы не умеете читать/выводить данные, открывать файлы? Воспользуйтесь примерами.

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу.

Обратите внимание на компилятор GNU C++11 5.1.0 (TDM-GCC-64) inc, который позволяет пользоваться дополнительной библиотекой. Под ним можно сдать вот это.

Must have

Задача 5A. Happy Three Friends [0.2 sec, 256 mb]

Три весёлых друга расплющены в лепёшки. Каждая лепёшка имеет форму идеального круга. Координаты центра круга от 0 до 1, радиус круга от 0 до 1. Ваша задача — найти площадь части плоскости, покрытой всеми тремя друзьями.

Формат входных данных

Три строки, каждая содержит по три вещественных числа $x_i y_i r_i$.

Формат выходных данных

Выведите ответ с абсолютной погрешностью не более 0.01.

stdin	stdout
0.0 0.0 1.0	0.442960
1.0 1.0 1.0	
0.0 1.0 1.0	

Обязательные задачи

Задача 5В. Арифметическая прогрессия [1 sec, 256 mb]

Однажды Петя узнал очень важную последовательность из n чисел. Тщательно проанализировав ее, он обнаружил, что она является арифметической прогрессией. Чтобы не забыть он записал ее элементы на n карточках.

Но затем случилась неприятность. Не зная всю важность этой последовательности, его брат Вовочка взял еще n карточек и написал на них произвольные числа, а потом перемещал все 2n карточек.

Теперь Петя хочет восстановить исходную последовательность по этим карточкам. К сожалению возможно, что это можно сделать несколькими способами, но Петю устроят любые n чисел, образующие арифметическую прогрессию.

Петя не может сделать это вручную, поэтому обратился к вам за помощью.

Напомним что последовательность a_1, a_2, \ldots, a_n называется арифметической прогрессией, если $a_i = a_{i-1} + d$ для всех i от 2 до n и некоторого d. Число d называется paзностью арифметической прогрессии.

Формат входных данных

В первой строке входного файла находится целое число n ($1 \le n \le 100\,000$). В следующей строке находится 2n целых чисел по модулю не превосходящих 10^9 — числа, написанные на карточках, перечисленные в произвольном порядке. Гарантируется, что можно выбрать n из них так, чтобы они образовывали арифметическую прогрессию.

Формат выходных данных

В первой строке выходного файла выведите a_1 и d — первый элемент и разность найденной арифметической прогрессии. Если d=0, число a_1 должно встречаться среди заданных чисел n раз.

Если существует несколько решений, выведите любое.

stdin	stdout
3	1 3
8 7 1 5 4 3	

Задача 5С. Альфа Дерево [8 sec, 256 mb]

У вас есть полное бинарное дерево глубины $n \ (0 \le n \le 32)$.

В дереве 2^n листьев, они пронумерованы слева направо числами от 0 до 2^n-1 .

B *i*-м листе записано число $x_i = (ai^2 + bi + c) \mod m$.

Есть фишка, которая изначально находится в корне дерева. Двое играют в игру, двигая фишку вниз по дереву. Когда фишка достигает листа дерева, игра заканчивается. Цель первого игрока — максимизировать число в листе, цель второго — минимизировать.

Формат входных данных

Числа n, a, b, c, m. При этом $10 \le m \le 10^9$.

Все a, b, c сгенерированы равномерным распределением на [0, m).

Формат выходных данных

Выведите результат игры при оптимальной игре обоих.

Примеры

stdin	stdout
3 10 7 9 20	11

Замечание

Взятие остатка по модулю – небыстрая операция. Чем их меньше, тем лучше.

Дополнительные задачи

Задача 5D. Длинная дорога [1 sec, 256 mb]

Дорога, дорога, осталось немного...

Дан случайный неориентированный граф G из n вершин и m ребер. Ваша задача — найти гамильтонов путь. Гарантируется, что гамильтонов путь в графе есть.

Формат входных данных

На первой строке число вершин $n \geqslant 2$ и число ребер $m \geqslant 1$.

Следующие m строк содержат пары чисел от 1 до n — ребра графа.

В графе нет ни петель, ни кратных ребер.

Поскольку почти полный граф — совсем не интересный тест, $m \leq 500$.

Формат выходных данных

На первой строке выведите n различных чисел от 1 до n — вершины гамильтоного пути в порядке прохода по ним. Начинать и заканчивать можно в любой вершине. Если гамильтоновых путей несколько, выведите любой.

Система оценки

Подзадача 1 (20 баллов) $n \leq 26$.

Подзадача 2 (20 баллов) $n \leq 35$.

Подзадача 3 (20 баллов) $n \leqslant 50$.

Подзадача 4 (20 баллов) $n \leq 70$.

Подзадача 5 (20 баллов) $n \leq 100$.

stdin	stdout
5 8	1 4 3 5 2
3 1	
2 5	
5 4	
3 4	
1 4	
3 5	
3 2	
1 2	

Задача 5E. Первообразный корень [1 sec, 256 mb]

Дано простое число p, найти первообразный корень g.

Первообразный корень — число, порождающее мультипликативную группу кольца вычетов по модулю $p: \langle 1, g, g^2, \dots, g^{p-2} \rangle = (\mathbb{Z}/p\mathbb{Z})^*$. Известно, что для любого p такое g существует.

Формат входных данных

Мультитест. Тестов не более 20.

Каждый тест – число $2 \le p \le 10^9$, p простое.

Формат выходных данных

Для каждого теста выведите любое подходящее g.

stdin	stdout
7	3
2	1

Задача 5F. Корни [0.8 sec, 256 mb]

Дано целое число $n \geqslant 1$. Нужно найти такое g, что для любого $a \colon gcd(a,n) = 1, 1 \leqslant a < n \quad \exists$ целое $x \colon g^x = a \mod n$. Напомним, что gcd(a,b) — наибольший общий делитель чисел a и b.

Формат входных данных

Внимание, мультитест!

На каждой строке число $n \ (2 \le n \le 10^{12}).$

Сколько тестов, мы вам не скажем, но все в рамках приличия.

Формат выходных данных

Для каждого n на отдельной строке выведите g ($1 \leqslant g < n$) или -1, если такого g не существует.

stdin	stdout
5	2
10	3
9	2
15	-1